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Abstract

Natural frequencies and mode shapes of rectangular plates subjected to sinusoidally distributed in-plane
compressive loading on two opposite edges were considered in this work. Although vibration analysis of
rectangular plates was investigated by numerous authors, flexural vibration of plates with nonlinearly
distributed in-plane loading received much less attention. However, certain problems involving thermal
stresses may have such nonlinear loading conditions in the plane of the plate. The analysis procedure for the
title problem involves first finding a plane elasticity solution for the in-plane problem satisfying all
boundary conditions. Then using this in- plane solution, flexural vibration analysis has to be carried out. In
a related work investigated recently by the present authors, an in-plane elasticity solution was developed
and was compared with existing analytical solutions in the literature and with the finite element method.
One aspect of this study was the stress diffusion (i.e., reduction of stress) phenomenon along the length of
the plate as well as the presence of all three in-plane stress components. Using this in-plane solution,
vibration analysis of rectangular plates was carried out for various plate aspect ratios and the results were
compared with corresponding values from finite element analysis.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibration analysis of thin rectangular plates subjected to uniform and linearly varying in-plane
load has been studied extensively in the literature [1,2]. Although exact solutions existed for plates
where the in-plane load was uniform, until recently only approximate solutions existed for plate
vibration problems involving linearly varying in-plane loads including moment loads. Recently,
Leissa and Kang [3,4] obtained exact series solutions for buckling and natural frequencies of
rectangular plates subjected to linearly varying in-plane load. The case of nonlinearly varying in-
plane load in the x direction received less attention partly due to additional complexity of solving
the plane elasticity problem satisfying the necessary boundary conditions. Timoshenko and
Goodier [5] were the first ones to propose an approximate in-plane solution for the case of a
parabolically varying in-plane load, using trial functions which satisfied all the boundary
conditions exactly. Pickett [6] considered the same problem and obtained a solution satisfying the
equilibrium and compatibility equations, but some residual stresses remained at the boundaries.
Apparently unaware of the in-plane stress solutions as developed by Timoshenko and Goodier
and by Pickett, van der Neut [7] and Benoy [8] used an over-simplified in-plane solution for the
buckling analysis wherein they considered the x direction in-plane stress distribution to be the
same at every x coordinate position and the y direction normal stress and the shear stress txy to be
zero.
Based on the mechanics of the problem, in accordance with Saint-Venant’s principle, one can

expect that the in-plane stresses inside the plate should exhibit the stress diffusion phenomenon as
the plate aspect ratio is increased. It is to be noted that the plane elasticity solutions as obtained by
Timoshenko and Goodier and by Pickett showed stress diffusion at higher plate aspect ratios
along with the presence of sy and txy stresses throughout the plate.
More recently the present investigators [9,10] obtained an in-plane solution in connection with

the buckling problem of a plate having sinusoidal in-plane load, and the results were compared
with the existing analytical solutions in the literature as well as with the finite element solution.
Two different analytical solutions were obtained using the superposition method and it was
observed that the renormalized two-stress-function solution showed better boundary condition
satisfaction compared to the four-stress-function solution. In the present analysis, both the in-
plane analytical solutions developed previously are used for the plate vibration problem and the
results are compared with the finite element solution.
2. In-plane solution

As shown in Fig. 1, a rectangular plate of dimensions (a and b) in the x and y directions,
respectively, is considered. The coordinate system is placed at the center of the plate and the
compressive in-plane loading applied at the edges x ¼ �1 is

sx ¼ s0 cos
pZ
2

� �
: (1)

Here Z ¼ 2y=b and x ¼ 2x=a; with range ½�1pðx; ZÞpþ 1�; are the dimensionless coordinates of
the plate.
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Fig. 1. Geometry and loading of the plate.

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763 751
Recently, the present authors [9,10] described in detail a renormalized two-stress-function
solution and a four-stress-function solution based on the superposition method and the results
were compared with a finite element solution. The superposition method, as suggested by
Timoshenko and Goodier [5] and extensively used by Gorman and Singhal [11], involves
superposing two or more stress function solutions in such a way that the residual stresses (usually
at the boundaries) are cancelled. Each stress function solution is considered in terms of a
trigonometric function in either plate coordinate. By expanding the stress functions in terms of
Fourier series at the plate boundaries, one can superpose the stresses in such a way that the plate
boundary conditions are satisfied. It is to be noted that due to the Fourier expansion of the stress
functions, the superposition method is a series solution.
In the present case considering the Airy stress function f1 as

f1 ¼ f ðxÞ cos
pZ
2

� �
(2)

and substituting into the governing differential equation r4 j ¼ 0; one can obtain the general
solution for the functional f ðxÞ as

f ðxÞ ¼ C1 cosh
kpx
2

� �
þ C2 sinh

kpx
2

� �
þ C3x cosh

kpx
2

� �
þ C4x sinh

kpx
2

� �
; (3)

where k ¼ a=b (plate aspect ratio) and C1–C4 are constants which are to be obtained from the
boundary conditions. It is to be noted that the stress function solution as given by Eqs. (2) and (3)
gives a zero normal stress at Z ¼ �1 edges.
Substituting the zero-shear-stress boundary condition and the normal stress distribution as

defined in Eq. (2), (after eliminating C2 and C3 based on symmetry conditions) at the edges
x ¼ �1; yields a complete solution for the stress function j1:

f ðxÞ ¼ C1 cosh
kpx
2

� �
þ C4x sinh

kpx
2

� �
; (4)

where

C1 ¼
pa=2b coshðpa=2bÞ þ sinhðpa=2bÞ

pa=2b þ sinhðpa=2bÞ coshðpa=2bÞ

sob2h

p2
; (5)
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C4 ¼ �
pa=2b sinhðpa=2bÞ

pa=2b þ sinhðpa=2bÞ coshðpa=2bÞ

sob2h

p2
: (6)

However, the above in-plane stress solution gives a residual shear stress distribution at the
Z ¼ �1 edges which can be expanded as a Fourier sine series. In order to eliminate these shear
stresses, one can start with a second stress function solution, which produces sinusoidal shear
stress distribution in the x direction. After eliminating the unsymmetric components, this stress
function is given by

f2 ¼
X

m¼1;2...

D1m cosh
mpZ

k

� �
þ D4mZ sinh

mpZ
k

� �� �
cosðmpxÞ; (7)

where D1m and D4m are constants to be determined from boundary conditions and the residual
stress from the previous stress function solution j1: The complete results for the constants D1m

and D4m and the stress distribution are given in Appendix A.
It is to be observed that whereas the initial stress-function solution (j1) is a one-term solution,

the second stress-function solution ðj2Þ is a series solution. Although the stress-function solution
j2 has zero normal stresses at the Z ¼ �1 edges and zero shear stresses at x ¼ �1 edges, it does
produce a residual normal stress ðsxÞ at x ¼ �1 edges.
It is observed that the residual normal stress due to the above stress function solution j2 is

merely shifting the edge stress distribution by a constant value. In view of this, a renormalization
factor is introduced by combining a uniform stress and a multiplication factor in such a way that
the sx boundary conditions are satisfied on x ¼ �1 edges.
Thus the complete solution is

j ¼ ðj1 þ j2 þ RÞr; (8)

where R is the uniform stress and r the renormalization factor such that the edge stress
distribution satisfies Eq. (1).
The four-stress-function solution can be considered as an extension of the two-stress-function

method wherein the residual stresses are removed by superposing additional stress function
Fig. 2. Comparative in-plane sx stress distribution (at 2y=b ¼ 0) along plate half length for different plate aspect ratios:

—, two-stress-function; - - -, four-stress-function; ........, FEA; lines with markers are for k ¼ 1; without markers k ¼ 3:
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solutions instead of renormalization. It was observed from the previous analysis [10] that the four-
stress-function showed some residual stresses especially at the plate corners. However, the
distribution of stresses throughout the plate is in close agreement with the two-stress-function
approach and with the finite element analysis (Fig. 2). In the present analysis, both two- and four-
stress-function solutions are considered for the vibration analysis and the results are compared
with the finite element analysis.
3. Vibration analysis

The governing differential equation for vibration of thin isotropic plates subjected to
compressive in-plane loading is

r4w þ
h

D
sx

q2w
qx2

þ 2txy
q2w
qxqy

þ sy
q2w
qy2

þ r
q2w
qt2

� �
¼ 0; (9)

where D is the flexural rigidity, h is the plate thickness, and w is the normal deflection, and r is the
plate density. After considering

wðx; y; tÞ ¼ wðx; yÞ sin ot

one can write the above equation as

r4 w þ
h

D
sx

q2w
qx2

þ 2txy
q2w
qxqy

þ sy
q2w
qy2

� ro2w

� �
¼ 0: (10)

As the in-plane stress solution is a series solution, an exact analytical solution may not be
possible due to the complexity of the resulting plate vibration equation. Therefore, an
approximate solution using the Galerkin method is obtained for combinations of simply
supported and clamped rectangular plate edges. For simply supported rectangular plates with
central coordinate system the trial functions in Eq. (11a) below satisfy all the required boundary
conditions. However, in order to obtain consecutive modes, trial functions involving sinusoidal
terms have also to be considered as shown in Eq. (11b). The trial functions for clamped plates are
given in Eqs. (12a) and (12b).

fSS ¼ cos
mpx
2

for m ¼ 1; 3; 5; . . . modes; (11a)

fSS ¼ sin
npx
2

for n ¼ 2; 4; 6; . . . modes; (11b)

fC ¼ cos
mpx
2

þ cos
ðm þ 2Þpx

2

� �
and m ¼ 0; 2; 4; . . . for 1; 3; 5; . . . modes; (12a)

fC ¼ � sin
npx
2

þ sin
ðn þ 2Þpx

2

� �
and n ¼ 1; 3; 5; . . . for 2; 4; 6; . . . modes: (12b)

Similar functions in the y (or Z) coordinate direction are obtained by replacing the x (or x)
coordinate with y (or Z) coordinate.
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Also the Galerkin trial function corresponding to any mode ðm; nÞ is

fmn ¼ amnfmðxÞfnðZÞ: (13)

Free-vibration frequencies are obtained at various relative load (buckling load fraction)
increments. Four trial functions involving (1,1), (2,1) (3,1), (4,1) vibration modes are considered in
the present analysis.
4. Finite element analysis

The rectangular plate is modeled using an eight-node (MARCTM element number 72)
quadrilateral shell element. Although this element formulation is a generalized one for shell
analysis, plate analysis can be done with equal ease. This element has three degrees of freedom at
each corner node and an additional rotational degree of freedom at each mid-node on the four
edges.
The plate model is analyzed using two different mesh sizes. A coarse mesh consisting of 200

(20
 10 for plate aspect ratio of 3) elements and fine mesh consisting of 800 (40
 20 in case of
plate aspect ratio of 3) are considered. Care is taken to ensure that the element shape remains as
close to the square as possible. The X and Y (u; v correspondingly) displacements are restricted
along the nodes on two mutually perpendicular lines intersecting the plate surface. At the left and
right edges of the plate, a uniform initial edge load (per unit length) is applied. This uniform edge
load is different for each element such that the magnitude of the edge load follows a sinusoidal
distribution. The edge load for each element is calculated such that the total edge load of the
element is identically equal to that of total sinusoidal load corresponding to the element edge
coordinates. Natural frequencies of vibration are calculated at various load increments and the
results are tabulated.
5. Numerical results

Numerical computations are carried out using the first four consecutive modes in the x
direction while keeping the first mode in the y direction and the results are compared with the
finite element analysis. Figs. 3–6 show the dimensionless frequency ratio ðO2=O2

s Þ against
dimensionless in-plane load ðs0 h b2=DÞ for various combinations of simply supported and
clamped plate edges. The dimensionless quantity O is associated with the lowest natural frequency
for the plate in consideration and Os is the dimensionless fundamental frequency of an unloaded
square plate with the corresponding edge condition. The frequency is nondimensionalized,

O2 ¼
rho2a2b2

D
: (14)

In all the edge conditions, the plate frequencies of vibration using two- and four-stress-function
methods showed close agreement with the finite element results only at lower plate aspect ratios.
As the aspect ratio is increased, considerable differences were observed.
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Fig. 3. Dimensionless frequency ratio at various in-plane load ratios for all edges simply supported (SSSS); k ¼ a=b

(aspect ratio); —, two-stress-function; - - -, four-stress-function; ......, FEA.

Fig. 4. Dimensionless frequency ratio at various in-plane load ratios for all edges clamped (CCCC); k ¼ a=b (aspect

ratio); —, two-stress-function; - - -, four-stress-function; ....., FEA.
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At higher aspect ratios, the two-stress-function method results appeared to be closer to the
finite element results for SSSS and CCCC plates. It is interesting to note that the finite element
frequencies are lower than the analytical results in the case of CCCC, SSCC plates and vice versa
for the case of SSSS and CCSS plates.
Only in the case of SSCC plates having an aspect ratio of 3, the two-stress-function solution

results and the four-stress-function results showed close agreement compared with the finite
element frequencies throughout the in-plane load range. In general, the differences in frequency
ratios between various methods increased uniformly as the in-plane load was increased towards
the fundamental buckling load. Also these differences are more pronounced at higher plate aspect
ratios. Thus one can see from these figures (Figs. 3–6) that larger differences in numerical values
among the various methods of solution occurred for higher loads and higher plate aspect ratios.
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Fig. 6. Dimensionless frequency ratio at various in-plane load ratios for loaded edges clamped and other edges simply

supported (CCSS); k ¼ a=b (aspect ratio); —, two-stress-function; - - -, four-stress-function; ....., FEA.

Fig. 5. Dimensionless frequency ratio at various in-plane load ratios for loaded edges simply supported and other edges

clamped (SSCC); k ¼ a=b (aspect ratio); —, two-stress-function; - - -, four-stress-function; ....., FEA.
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It is interesting to note that use of nondimensional frequency, as defined in Eq. (14), resulted in
a lower value of fundamental frequency for the plate aspect ratio of 2 than that of a square plate
for CCSS boundary conditions. All the remaining edge conditions gave higher frequencies than
the fundamental frequency of the corresponding square plate.
Obviously, one can anticipate much closer agreement of the numerical values if one considers

the nondimensional frequency itself, rather than the square of the frequency. Tables1(a)–4(c)
show the numerical values of the nondimensional frequency at various in-plane load ratios. From
these tables the excellent agreement between the two- and four-stress-function results is easily
evident. Although there are minor differences in buckling loads [10] between these analytical
methods, the vibration frequencies are identical when compared against the relative load ratio.
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Table 1

Dimensionless frequency O ¼ oab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; all edges simply supported (SSSS)

s0=scr Two-stress-function Four-stress-function Finite element analysis a

(a) a=b ¼ 1

0.1 18.72 18.72 18.80(1,1)

47.64 47.63 48.05(2,1)

96.78 96.77 98.59(3,1)

165.7 165.7 171.3(4,1)

0.5 13.96 13.96 14.03 (1,1)

40.12 40.05 40.43(2,1)

88.74 88.66 90.41(3,1)

157.5 157.5 162.9(4,1)

0.9 6.248 6.250 6.312(1,1)

30.82 30.65 30.97(2,1)

79.89 79.73 81.39(3,1)

148.9 148.7 154.1(4,1)

scrhb2=D 50.78 53.49 53.75

(b) a=b ¼ 2

0.1 23.95 23.96 24.06(1,1)

37.47 37.47 37.64(2,1)

61.30 61.30 61.67(3,1)

95.40 95.40 96.25(4,1)

0.5 20.81 20.89 20.97(1,1)

28.00 28.04 28.16(2,1)

48.30 48.29 48.56(3,1)

80.94 80.90 81.68(4,1)

0.9 12.59 12.63 12.76(2,1)

16.90 17.00 17.04(1,1)

30.23 30.24 30.17(3,1)

63.30 63.23 63.84(4,1)

scrhb2=D 53.64 56.77 56.55

(c) a=b ¼ 3

0.1 32.36 32.33 32.53(1,1)

40.98 40.99 41.20(2,1)

56.17 56.17 56.51(3,1)

78.31 78.29 78.96(4,1)

0.5 30.12 29.96 30.31(1,1)

32.83 32.89 33.20(2,1)

41.88 41.87 42.35(3,1)

60.05 59.94 60.91(4,1)

0.9 18.70 18.72 19.36(3,1)

21.17 21.12 21.73(2,1)

27.75 27.40 27.99(1,1)

33.32 33.09 34.53(4,1)

scrhb2=D 56.73 59.69 57.54

aModes are not consecutive.

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763 757
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Table 2

Dimensionless frequency O ¼ oab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; loaded edges simply supported and other edges clamped

s0=scr Two-stress-function Four-stress function Finite element analysis

(a) a=b ¼ 1

0.1 28.40 28.42 27.86(1,1)

52.97 52.97 52.25(2,1)

100.2 100.2 100.5(3,1)

168.3 168.3 172.1(4,1)

0.5 22.96 23.07 22.42(1,1)

39.49 39.50 38.99(2,1)

84.93 84.92 85.69(3,1)

152.7 152.6 157.1(4,1)

0.9 15.65 15.90 15.12(1,1)

17.67 17.68 17.58(2,1)

66.26 66.24 67.67(3,1)

135.2 135.2 140.1(4,1)

scrhb2=D 92.10 95.56 93.50

(b) a=b ¼ 2

0.1 48.03 48.06 47.31(1,1)

56.89 56.91 55.86(2,1)

75.83 75.84 74.54(3,1)

106.4 106.3 105.1(4.1)

0.5 45.62 45.74 44.98(1,1)

46.32 46.40 45.76(2,1)

56.64 56.69 56.17(3,1)

82.13 82.12 82.09(4,1)

0.9 25.18 25.15 25.56(3,1)

30.24 29.67 30.58(2,1)

43.45 43.79 42.99(1,1)

48.40 48.52 50.06(4,1)

scrhb2=D 94.20 99.19 92.96

(c) a=b ¼ 3

0.1 69.93 69.87 68.93(1,1)

75.02 75.06 73.82(2,1)

85.19 85.25 83.75(3,1)

102.2 102.1 100.6(4,1)

0.5 67.61 67.92 66.96(2,1)

68.31 68.07 67.40(1,1)

68.75 69.06 68.53(3,1)

76.40 76.30 76.93(4,1)

0.9 33.966 34.00 36.71(4,1)

46.877 47.85 39.60(3,1)

56.91 60.30 59.83(2,1)

66.662 66.09 66.04(1,1)

scrhb2=D 102.8 106.5 95.31

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763758
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Table 3

Dimensionless frequency O ¼ oab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; all edges clamped (CCCC)

s0=scr Two-stress-function Four-stress-function Finite element analysis

(a) a=b ¼ 1

0.1 34.97 34.97 34.38(1,1)

71.27 71.21 70.44(2,1)

132.19 132.1 130.0(3,1)

212.74 212.6 213.2(4,1)

0.5 26.54 26.54 26.24(1,1)

54.04 53.66 54.08(2,1)

112.12 111.66 111.5(3,1)

191.64 191.1 193.8(4,1)

0.9 12.31 12.32 12.35(1,1)

27.17 25.80 29.11(2,1)

87.76 86.70 89.30(3,1)

167.9 166.9 172.4(4,1)

scrhb2=D 137.3 145.5 139.8

(b) a=b ¼ 2

0.1 49.45 49.48 48.63(1,1)

62.51 62.52 61.11(2,1)

88.92 88.63 85.39(3,1)

126.0 126.0 121.9(4,1)

0.5 46.00 46.17 45.28(1,1)

49.44 49.55 48.50(2,1)

66.39 66.36 64.37(3,1)

99.05 98.84 96.15(4,1)

0.9 28.90 28.97 28.37(3,1)

30.25 30.76 29.37(2,1)

43.72 43.90 43.03(1,1)

61.54 60.87 60.56(4,1)

scrhb2=D 113.4 121.0 116.0

(c) a=b ¼ 3

0.1 70.50 70.42 69.42(1,1)

77.45 77.50 75.88(2,1)

91.60 91.72 88.58(3,1)

113.0 113.0 109.0(4,1)

0.5 67.91 67.44 66.88(1,1)

68.30 68.49 67.10(2,1)

72.52 73.33 71.00(3,1)

84.72 84.87 82.41(4,1)

0.9 37.20 37.09 36.68(4,1)

44.44 46.31 40.90(3,1)

59.37 60.19 57.81(2,1)

66.39 65.83 66.30(1,1)

scrhb2=D 113.7 118.7 112.6

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763 759
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Table 4

Dimensionless frequency O ¼ oab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; loaded edges clamped and other edges simply supported (CCSS)

s0=scr Two-stress-function Four-stress-function Finite element analysis

(a) a=b ¼ 1

0.1 27.65 27.65 27.61(1,1)

67.48 67.46 67.59(2,1)

129.7 129.69 128.9(3,1)

210.8 210.8(4,1) a—

0.5 20.76 20.75 20.83(1,1)

56.77 56.65 56.97(2,1)

117.5 117.4 117.1(3,1)

198.0 197.9(4,1) a—

0.9 9.382 9.379 9.537(1,1)

43.41 43.12 43.62(2,1)

104.0 103.7 104.4(3,1)

184.4 184.1 186.9(4,1)

scrhb2=D 87.70 92.84 93.36

(b) a=b ¼ 2

0.1 26.52 26.54 26.52(1,1)

45.30 45.30 45.10(2,1)

76.22 76.21 74.58(3,1)

116.6 116.6 114.5(4,1)

0.5 22.03 22.11 22.18(1,1)

33.90 33.88 33.91(2,1)

61.00 60.91 59.78(3,1)

99.77 99.59 97.99(4,1)

0.9 15.27 15.25 15.44(2,1)

15.57 15.82 15.70(1,1)

40.70 40.45 39.89(3,1)

79.45 79.02 77.94(4,1)

scrhb2=D 68.92 73.81 73.72

(c) a=b ¼ 3

0.1 33.50 33.39 33.54(1,1)

45.02 45.02 44.86(2,1)

64.98 65.02 63.61(3,1)

91.47 91.36 89.69(4,1)

0.5 30.40 29.73 30.53(1,1)

35.19 35.10 35.26(2,1)

48.75 49.01 48.12(3,1)

71.64 71.01 70.41(4,1)

0.9 20.01 19.07 19.88(2,1)

20.52 19.98 20.53(3,1)

28.89 28.80 29.09(1,1)

44.12 42.56 43.60(4,1)

scrhb2=D 65.28 69.55 68.05

aModes are not consecutive.

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763760
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Table 5

Dimensionless frequency O ¼ oab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of a plate with an aspect ratio of 3 and relative in-plane load ratio of 0.5

Mode sequence SSSS SSCC CCCC CCSS

1 30.31(1,1) 66.96(2,1) 66.88(1,1) 30.53(1,1)

2 33.20(2,1) 67.40(1,1) 67.10(2,1) 35.26(2,1)

3 42.35(3,1) 68.53(3,1) 71.00(3,1) 48.12(3,1)

4 60.91(4,1) 76.93(4,1) 82.41(4,1) 70.41(4,1)

5 88.38(5,1) 95.45(5,1) 104.7(5,1) 101.5(5,1)

6 122.7(1,2) 124.7(6,1) 137.8(6,1) 123.0(1,2)

7 124.1(6,1) 163.9(7,1) 181.0(7,1) 132.2(2,2)

8 130.8(2,2) 189.5(1,2) 189.7(1,2) 140.8(6,1)

9 144.2(3,2) 195.2(2,2) 196.0(2,2) 147.5(3,2)

10 163.9(4,2) 204.1(3,2) 206.1(3,2) 169.6(4,2)

K.K.V. Devarakonda, C.W. Bert / Journal of Sound and Vibration 283 (2005) 749–763 761
It is to be noted that in all the tables, the numerical values for nondimensional frequency are
given based on the definition of Eq. (14). Also, the mode number shown in brackets for finite
element results is applicable to the entire row (i.e. for both of the analytical methods). The only
exception is the case of the CCSS plate (Table 4(a)) with an aspect ratio of 1.
As the Galerkin method is an assumed mode approximate method, one generally does not

know beforehand whether or not the assumed modes yield consecutive modes. However, the finite
element analysis arranges the modes consecutively based on the ascending order of the numerical
value of the frequency. For comparison purposes, only those modes that are used for the
analytical method are shown in all of these tables. The only exception is the lowest frequency for
any given relative load ratio where all of the methods considered in the present study gave
identical modes. Thus, with the exception of the lowest frequency, one can anticipate additional
vibration modes to be active between the tabulated values. As a result of these additional modes,
the frequency corresponding to the vibration mode (4,1) in Table 4(a) is not shown for the finite
element results.
Table 5 lists the vibration frequencies in ascending order for various plate edge conditions

(aspect ratio 3) subjected to a relative in-plane load of 0.5. It is to be noted that these values are
listed based on the finite element analysis.
It is interesting to note the similarities in numerical frequencies for the first few modes between

those plates which have common Y -type edge conditions. At higher modes, the frequencies are
progressively higher for plates with clamped edge conditions than the corresponding values for
simply supported edges.
6. Conclusions

Vibration analysis of a rectangular plate subjected to uniaxial nonlinear (sinusoidal) in-plane
loading is carried out in the present work. Based on the in-plane elasticity solution developed
previously [9,10], the vibration analysis is carried out and the results are compared with the finite
element analysis. Due to the complexity of the governing differential equation, an approximate
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solution using the Galerkin method is carried out. The variation of the lowest (fundamental)
frequency with the buckling load is plotted for various combinations of simply supported and
clamped rectangular plates, specifically SSSS, CCCC, SSCC, CCSS plates.
In general, excellent agreement for the frequencies between the analytical and the finite element

results is observed. The differences among various methods are more pronounced at higher plate
aspect ratios and with increasing in-plane loads.
Appendix A. Two-stress-function results

Let

y ¼
p
2ab

C1
kp
2

þ C4

� �
sinh

kpx
2

þ C4
kp
2
x cosh

kpx
2

� �
(A.1)

and

F1m ¼

Z 1

�1

y sinðmpxÞdx; m ¼ 1; 2; . . . ; (A.2)

D1m ¼
�F1mab

mp ðmp=k � 1= tanhðmp=kÞÞ sinhmp=k � mp=kðcoshðmp=kÞ= tanhðmp=kÞÞ
	 
 (A.3)

and

D4m ¼
�D1m
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: (A.4)

The stress distribution due to stress function j1 is
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The stress distribution due to stress function j2 is
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sy2 ¼ �
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